Linear Algebra II

17/03/2016, Thursday, 14:00-16:00
$1 \quad(10+10=20 \mathrm{pts})$
Inner product spaces

Consider the vector space $\mathbb{R}^{2 \times 2}$ with the inner product

$$
\langle A, B\rangle=\operatorname{trace}\left(A^{T} B\right)
$$

Determine the orthogonal complement of
(a) the subspace of all 2×2 diagonal matrices.
(b) the subspace of all 2×2 symmetric matrices.

REQUIRED KNOWLEDGE: Orthogonality, orthogonal complement.

SOLUTION:

1a: Let \mathcal{D} denote the subspace of all 2×2 diagonal matrices. Note that

$$
A \in \mathcal{D}^{\perp} \Longleftrightarrow\langle D, A\rangle=0 \text { for all } D \in \mathcal{D}
$$

by the definition of the orthogonal complement. Then, we have

$$
\begin{aligned}
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathcal{D}^{\perp} \Longleftrightarrow\left\langle\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right\rangle & =\operatorname{trace}\left(\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) \\
& =\operatorname{trace}\left(\left[\begin{array}{ll}
x a & x b \\
y c & y d
\end{array}\right]\right) \\
& =x a+y d=0 \text { for all } x \text { and } y
\end{aligned}
$$

This means that

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathcal{D}^{\perp} \Longleftrightarrow a=0 \text { and } d=0
$$

and hence

$$
\mathcal{D}^{\perp}=\left\{\left.\left[\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right] \right\rvert\, b, c \in \mathbb{R}\right\}
$$

1b: Let \mathcal{S} denote the subspace of all 2×2 symmetric matrices. Note that

$$
A \in \mathcal{S}^{\perp} \Longleftrightarrow\langle S, A\rangle=0 \text { for all } S \in \mathcal{S}
$$

by the definition of the orthogonal complement. Then, we have

$$
\begin{aligned}
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathcal{S}^{\perp} \Longleftrightarrow\left\langle\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right\rangle & =\operatorname{trace}\left(\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) \\
& =\operatorname{trace}\left(\left[\begin{array}{cc}
x a+y c & x b+y d \\
y a+z c & y b+z d
\end{array}\right]\right) \\
& =x a+y c+y b+z d \\
& =x a+y(c+b)+z d=0 \text { for all } x, y, \text { and } z
\end{aligned}
$$

This means that

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathcal{S}^{\perp} \Longleftrightarrow a=0, d=0 \text { and } b+c=0
$$

and hence

$$
\mathcal{S}^{\perp}=\left\{\left.\left[\begin{array}{cc}
0 & b \\
-b & 0
\end{array}\right] \right\rvert\, b \in \mathbb{R}\right\}
$$

Consider the matrix

$$
M=\left[\begin{array}{ccc}
a & 0 & b \\
0 & a & 0 \\
b & 0 & a
\end{array}\right]
$$

where a, b are real numbers and $b \neq 0$.
(a) Determine if M is diagonalizable without finding its eigenvalues and eigenvectors. Justify your answer.
(b) Find the eigenvalues of M.
(c) Find an orthogonal matrix that diagonalizes M.

Required Knowledge: Eigenvalues, eigenvectors, diagonalization.

Solution:

2a: The matrix M is symmetric and hence it is diagonalizable.
2b: Note that
$\operatorname{det}(M-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ccc}a-\lambda & 0 & b \\ 0 & a-\lambda & 0 \\ b & 0 & a-\lambda\end{array}\right]\right)=(a-\lambda) \operatorname{det}\left(\left[\begin{array}{cc}a-\lambda & b \\ b & a-\lambda\end{array}\right]\right)=(a-\lambda)\left[(a-\lambda)^{2}-b^{2}\right]$.
This leads to $\lambda_{1}=a-b, \lambda_{2}=a, \lambda_{3}=a+b$.

2b: To find a diagonalizer, we need to compute eigenvectors. Note that the eigenvalues are distinct since $b \neq 0$.
For $\lambda_{1}=a-b$, we need to solve

$$
\left[\begin{array}{lll}
b & 0 & b \\
0 & b & 0 \\
b & 0 & b
\end{array}\right] x_{1}=0
$$

This leads to

$$
x_{1}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

For $\lambda_{2}=a$, we need to solve

$$
\left[\begin{array}{lll}
0 & 0 & b \\
0 & 0 & 0 \\
b & 0 & 0
\end{array}\right] x_{2}=0
$$

This leads to

$$
x_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

For $\lambda_{3}=a+b$, we need to solve

$$
\left[\begin{array}{ccc}
-b & 0 & b \\
0 & -b & 0 \\
b & 0 & -b
\end{array}\right] x_{3}=0
$$

This leads to

$$
x_{3}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

To obtain an orthogonal diagonalizer, we only have to normalize the eigenvectors:

$$
\left[\begin{array}{lll}
a & 0 & b \\
0 & a & 0 \\
b & 0 & a
\end{array}\right]\left[\begin{array}{rrr}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & 1 & 0 \\
-1 / \sqrt{2} & 0 & 1 / \sqrt{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & 1 & 0 \\
-1 / \sqrt{2} & 0 & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{rrr}
a-b & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a+b
\end{array}\right] .
$$

A matrix M is

- idempotent if $M^{2}=M$.
- nilpotent if $M^{k}=0$ for some integer $k \geqslant 0$.
- involutory if $M^{2}=I$.
(a) Show that every eigenvalue of an idempotent matrix is either 0 or 1 .
(b) Show that every eigenvalue of a nilpotent matrix is 0 .
(c) Show that every eigenvalue of an involutory matrix is either -1 or 1 .
(d) Show that the only diagonalizable nilpotent matrix is the zero matrix.
(e) Show that every nonsingular idempotent matrix diagonalizes itself.
(f) Show that A is involutory if and only if $\frac{1}{2}(A+I)$ is idempotent.
(g) Show that every involutory matrix is diagonalizable.

Required Knowledge: Eigenvalues, eigenvectors, nonsingularity, diagonalizability.

Solution:

3a: Suppose that M is an idempotent matrix. Let (λ, x) be an eigenpair, that is $M x=\lambda x$ and $x \neq 0$. Note that $M^{2} x=\lambda^{2} x$. Then, we have

$$
0=\left(M^{2}-M\right) x=\left(\lambda^{2}-\lambda\right) x
$$

This means that $\lambda^{2}-\lambda=0$ since $x \neq 0$. Therefore, either $\lambda=0$ or $\lambda=1$.

3b: Suppose that M is a nilpotent matrix. Let (λ, x) be an eigenpair, that is $M x=\lambda x$ and $x \neq 0$. Note that $M^{k} x=\lambda^{k} x$ for any integer $k \geqslant 0$. Then, we have

$$
0=M^{k} x=\lambda^{k} x
$$

Consequently, $\lambda=0$ since $x \neq 0$.

3c: Suppose that M is an involutory matrix. Let (λ, x) be an eigenpair, that is $M x=\lambda x$ and $x \neq 0$. Note that $M^{2} x=\lambda^{2} x$. Then, we have

$$
0=\left(M^{2}-I\right) x=\left(\lambda^{2}-1\right) x
$$

As such, we obtain that either $\lambda=-1$ or $\lambda=1$.

3d: Suppose that $M^{k}=0$ for some $k \geqslant 0$ and $M=T D T^{-1}$ where D is a diagonal matrix. Then, we have

$$
0=M^{k}=\underbrace{T D T^{-1} T D T^{-1} \cdots T D T^{-1}}_{k \text { times }}=T D^{k} T^{-1}
$$

This means that $D^{k}=0$ and hence $D=0$. Therefore, $M=T D T^{-1}=0$.

3e: Suppose that M is a nonsingular idempotent matrix. Observe that

$$
M^{-1} M M=M^{-1} M^{2}=M^{-1} M=I
$$

Therefore, we have $M=M I M^{-1}$. In other words, M diagonalizes itself.

3f: Note that

$$
\begin{aligned}
\frac{1}{2}(A+I) \text { is idempotent } & \Longleftrightarrow \frac{1}{2}(A+I) \frac{1}{2}(A+I)=\frac{1}{2}(A+I) \\
& \Longleftrightarrow \frac{1}{4}\left(A^{2}+2 A+I\right)=\frac{1}{2}(A+I) \\
& \Longleftrightarrow \frac{1}{4}\left(A^{2}-I\right)=0 \\
& \Longleftrightarrow A^{2}=I \\
& \Longleftrightarrow A \text { is involutory. }
\end{aligned}
$$

3g: Suppose that $M \in \mathbb{R}^{n \times n}$ is an involutory matrix. We know that M is diagonalizable if and only if it has n linearly independent eigenvectors. Suppose that M has at most $k<n$ linearly independent eigenvectors, say $u_{1}, u_{2}, \ldots, u_{k}$. Let $v \notin \operatorname{span}\left(u_{1}, u_{2}, \ldots, u_{k}\right)$. We distinguish two cases:

- case 1: $M v$ is a multiple of v.

In this case, v is an eigenvector of M. Since $v \notin \operatorname{span}\left(u_{1}, u_{2}, \ldots, u_{k}\right)$, the set $\left\{u_{1}, u_{2}, \ldots, u_{k}, v\right\}$ is linearly independent. Hence, M has $k+1$ linearly independent eigenvectors. Contradiction!

- case 2: $M v$ is not a multiple of v.

In this case, neither $v+M v$ nor $v-M v$ is zero. Note that

$$
\begin{aligned}
& M(v+M v)=M v+M^{2} v=M v+v=v+M v \\
& M(v-M v)=M v-M^{2} v=M v-v=-(v-M v)
\end{aligned}
$$

This means that both $v+M v$ and $v-M v$ are eigenvectors of M. Since $v \notin \operatorname{span}\left(u_{1}, u_{2}, \ldots, u_{k}\right)$, the vectors $v+M v$ and $v-M v$ cannot belong to $\operatorname{span}\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ at the same time. Hence, M has $k+1$ linearly independent eigenvectors. Contradiction!

Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

(a) Find a singular value decomposition of A.
(b) Find the best rank 1 approximation for A.

REQUIRED KNOWLEDGE: Singular value decomposition, lower rank approximation.

Solution:

4a: Note that

$$
A^{T} A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

Therefore, the eigenvalues of $A^{T} A$ are given by

$$
\lambda_{1}=2 \quad \text { and } \quad \lambda_{2}=1
$$

and hence the singular values of M are given by

$$
\sigma_{1}=\sqrt{2} \quad \text { and } \quad \sigma_{2}=1
$$

Note that

$$
v_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad v_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

are the normalised eigenvectors for λ_{1} and λ_{2}, respectively. This results in

$$
V=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Let

$$
u_{1}=\frac{1}{\sigma_{1}} A v_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

and

$$
u_{2}=\frac{1}{\sigma_{2}} M v_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Now, we need to find an orthonormal basis for $\mathcal{N}\left(A^{T}\right)$. Consider the linear system

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] w=0
$$

This leads to, for instance,

$$
w=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

Then, we obtain

$$
u_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

Thus, we have the SVD:

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

$\mathbf{4 b}$: The best rank 1 approximation is given by:

$$
X=\left[\begin{array}{rrr}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right] .
$$

