
Linear Algebra II

17/03/2016, Thursday, 14:00-16:00

 (10 + 10 = 20 pts) Inner product spaces

Consider the vector space R2×2 with the inner product

〈A,B〉 = trace(ATB).

Determine the orthogonal complement of

(a) the subspace of all 2× 2 diagonal matrices.

(b) the subspace of all 2× 2 symmetric matrices.

Required Knowledge: Orthogonality, orthogonal complement.

Solution:

1a: Let D denote the subspace of all 2× 2 diagonal matrices. Note that

A ∈ D⊥ ⇐⇒ 〈D,A〉 = 0 for all D ∈ D

by the definition of the orthogonal complement. Then, we have

A =

[
a b
c d

]
∈ D⊥ ⇐⇒ 〈

[
x 0
0 y

]
,

[
a b
c d

]
〉 = trace(

[
x 0
0 y

] [
a b
c d

]
)

= trace(

[
xa xb
yc yd

]
)

= xa+ yd = 0 for all x and y.

This means that

A =

[
a b
c d

]
∈ D⊥ ⇐⇒ a = 0 and d = 0

and hence

D⊥ = {
[
0 b
c 0

]
| b, c ∈ R}.

1b: Let S denote the subspace of all 2× 2 symmetric matrices. Note that

A ∈ S⊥ ⇐⇒ 〈S,A〉 = 0 for all S ∈ S

by the definition of the orthogonal complement. Then, we have

A =

[
a b
c d

]
∈ S⊥ ⇐⇒ 〈

[
x y
y z

]
,

[
a b
c d

]
〉 = trace(

[
x y
y z

] [
a b
c d

]
)

= trace(

[
xa+ yc xb+ yd
ya+ zc yb+ zd

]
)

= xa+ yc+ yb+ zd

= xa+ y(c+ b) + zd = 0 for all x, y, and z.



This means that

A =

[
a b
c d

]
∈ S⊥ ⇐⇒ a = 0, d = 0 and b+ c = 0

and hence

S⊥ = {
[

0 b
−b 0

]
| b ∈ R}.



 (4 + 6 + 15 = 25 pts) Diagonalization

Consider the matrix

M =

a 0 b
0 a 0
b 0 a


where a, b are real numbers and b 6= 0.

(a) Determine if M is diagonalizable without finding its eigenvalues and eigenvectors. Justify
your answer.

(b) Find the eigenvalues of M .

(c) Find an orthogonal matrix that diagonalizes M .

Required Knowledge: Eigenvalues, eigenvectors, diagonalization.

Solution:

2a: The matrix M is symmetric and hence it is diagonalizable.

2b: Note that

det(M − λI) = det(

a− λ 0 b
0 a− λ 0
b 0 a− λ

) = (a− λ) det(

[
a− λ b
b a− λ

]
) = (a− λ)[(a− λ)2 − b2].

This leads to λ1 = a− b, λ2 = a, λ3 = a+ b.

2b: To find a diagonalizer, we need to compute eigenvectors. Note that the eigenvalues are
distinct since b 6= 0.
For λ1 = a− b, we need to solve b 0 b

0 b 0
b 0 b

x1 = 0.

This leads to

x1 =

 1
0
−1

 .
For λ2 = a, we need to solve 0 0 b

0 0 0
b 0 0

x2 = 0.

This leads to

x2 =

0
1
0

 .
For λ3 = a+ b, we need to solve −b 0 b

0 −b 0
b 0 −b

x3 = 0.

This leads to

x3 =

1
0
1

 .



To obtain an orthogonal diagonalizer, we only have to normalize the eigenvectors:a 0 b
0 a 0
b 0 a

 1/
√

2 0 1/
√

2
0 1 0

−1/
√

2 0 1/
√

2

 =

 1/
√

2 0 1/
√

2
0 1 0

−1/
√

2 0 1/
√

2

a− b 0 0
0 a 0
0 0 a+ b

 .



 (2 + 2 + 2 + 3 + 3 + 3 + 5 = 20 pts) Eigenvalues of special matrices

A matrix M is

• idempotent if M2 = M .

• nilpotent if Mk = 0 for some integer k > 0.

• involutory if M2 = I.

(a) Show that every eigenvalue of an idempotent matrix is either 0 or 1.

(b) Show that every eigenvalue of a nilpotent matrix is 0.

(c) Show that every eigenvalue of an involutory matrix is either −1 or 1.

(d) Show that the only diagonalizable nilpotent matrix is the zero matrix.

(e) Show that every nonsingular idempotent matrix diagonalizes itself.

(f) Show that A is involutory if and only if 1
2 (A+ I) is idempotent.

(g) Show that every involutory matrix is diagonalizable.

Required Knowledge: Eigenvalues, eigenvectors, nonsingularity, diagonalizabil-
ity.

Solution:

3a: Suppose that M is an idempotent matrix. Let (λ, x) be an eigenpair, that is Mx = λx
and x 6= 0. Note that M2x = λ2x. Then, we have

0 = (M2 −M)x = (λ2 − λ)x.

This means that λ2 − λ = 0 since x 6= 0. Therefore, either λ = 0 or λ = 1.

3b: Suppose that M is a nilpotent matrix. Let (λ, x) be an eigenpair, that is Mx = λx and
x 6= 0. Note that Mkx = λkx for any integer k > 0. Then, we have

0 = Mkx = λkx.

Consequently, λ = 0 since x 6= 0.

3c: Suppose that M is an involutory matrix. Let (λ, x) be an eigenpair, that is Mx = λx and
x 6= 0. Note that M2x = λ2x. Then, we have

0 = (M2 − I)x = (λ2 − 1)x.

As such, we obtain that either λ = −1 or λ = 1.

3d: Suppose that Mk = 0 for some k > 0 and M = TDT−1 where D is a diagonal matrix.
Then, we have

0 = Mk = TDT−1TDT−1 · · ·TDT−1︸ ︷︷ ︸
k times

= TDkT−1.

This means that Dk = 0 and hence D = 0. Therefore, M = TDT−1 = 0.

3e: Suppose that M is a nonsingular idempotent matrix. Observe that

M−1MM = M−1M2 = M−1M = I.



Therefore, we have M = MIM−1. In other words, M diagonalizes itself.

3f: Note that

1

2
(A+ I) is idempotent ⇐⇒ 1

2
(A+ I)

1

2
(A+ I) =

1

2
(A+ I)

⇐⇒ 1

4
(A2 + 2A+ I) =

1

2
(A+ I)

⇐⇒ 1

4
(A2 − I) = 0

⇐⇒ A2 = I

⇐⇒ A is involutory.

3g: Suppose that M ∈ Rn×n is an involutory matrix. We know that M is diagonalizable if
and only if it has n linearly independent eigenvectors. Suppose that M has at most k < n linearly
independent eigenvectors, say u1, u2, . . . , uk. Let v 6∈ span(u1, u2, . . . , uk). We distinguish two
cases:

• case 1: Mv is a multiple of v.

In this case, v is an eigenvector ofM . Since v 6∈ span(u1, u2, . . . , uk), the set {u1, u2, . . . , uk, v}
is linearly independent. Hence, M has k + 1 linearly independent eigenvectors. Contradic-
tion!

• case 2: Mv is not a multiple of v.

In this case, neither v +Mv nor v −Mv is zero. Note that

M(v +Mv) = Mv +M2v = Mv + v = v +Mv

M(v −Mv) = Mv −M2v = Mv − v = −(v −Mv).

This means that both v+Mv and v−Mv are eigenvectors ofM . Since v 6∈ span(u1, u2, . . . , uk),
the vectors v+Mv and v−Mv cannot belong to span(u1, u2, . . . , uk) at the same time. Hence,
M has k + 1 linearly independent eigenvectors. Contradiction!



 (20 + 5 = 25 pts) Singular value decomposition

Consider the matrix

A =

1 0
1 0
0 1

 .
(a) Find a singular value decomposition of A.

(b) Find the best rank 1 approximation for A.

Required Knowledge: Singular value decomposition, lower rank approximation.

Solution:

4a: Note that

ATA =

[
1 1 0
0 0 1

]1 0
1 0
0 1

 =

[
2 0
0 1

]
.

Therefore, the eigenvalues of ATA are given by

λ1 = 2 and λ2 = 1

and hence the singular values of M are given by

σ1 =
√

2 and σ2 = 1.

Note that

v1 =

[
1
0

]
and v2 =

[
0
1

]
are the normalised eigenvectors for λ1 and λ2, respectively. This results in

V =

[
1 0
0 1

]
.

Let

u1 =
1

σ1
Av1 =

1√
2

1
1
0


and

u2 =
1

σ2
Mv2 =

0
0
1

 .
Now, we need to find an orthonormal basis for N (AT ). Consider the linear system[

1 1 0
0 0 1

]
w = 0.

This leads to, for instance,

w =

 1
−1
0

 .
Then, we obtain

u3 =
1√
2

 1
−1
0

 .



Thus, we have the SVD:

1 0
1 0
0 1

 =


1√
2

0 1√
2

1√
2

0 − 1√
2

0 1 0


√2 0

0 1
0 0

[1 0
0 1

]
.

4b: The best rank 1 approximation is given by:

X =


1√
2

0 1√
2

1√
2

0 − 1√
2

0 1 0


√2 0

0 0
0 0

[1 0
0 1

]
=

1 0
1 0
0 0

 .


